BioFabrication for Medicine

We create solutions for clinical problems

Welcome to the Moroni Lab - Biofabrication for Medicine

The Moroni lab develops new biofabrication technologies to generate libraries of 3D scaffolds able to control cell fate. This passes through the design of biomaterials, 3D scaffolds, and surface properties to better understand cell-material interactions.

Current tissue engineering and regenerative medicine products suffer from high costs and laborious techniques that complicate scaling-up production. First generation products consisted of cells in suspension, encapsulated in hydrogels, or seeded into 3D porous matrices. These products demonstrated the potential of regenerative medicine therapies by reducing pain and restoring tissue continuity. Yet, the regenerated tissue is not always as functional as the original one. This leads to degeneration few years after surgery and consequently to the need of another surgery. Causes are different. Cells need to be expanded before achieving a sufficient number for implantation. Cell expansion is typically performed on 2D surfaces, while in the body cell proliferation and homeostasis happens in a 3D environment. This is associated with a loss of the original cell phenotype. Consequently, the expanded cells produce a different extracellular matrix (ECM), ultimately resulting in a tissue formation that is different than the targeted tissue to regenerate. Furthermore, surgical procedures with these products typically consist of two steps, namely isolation and expansion of cells from a tissue biopsy and cell seeding on scaffolds prior to implantation. This is associated with long hospital stay and rehabilitation time, increasing healthcare costs as well.

Our overarching goal is to create new solutions for regenerative medicine and understand the fundamental phenomena at the base of the observed regenerative processes.

Latest News

  • New Hybrid Biofabrication technology

    Many tissues in our body display gradients. These are not only biological gradients, but also structural, physical, and chemical ones, resulting in smoother variations of mechanical properties and cell functional activity.

    Read More

  • Kidney 3D in vitro models through bioprinting

    At the Complex Tissue Regeneration department, we work hard to bridge the gap towards the dream of organs bioprinting. Step by step, we are now progressing towards understanding more and more in depth the requirements to bioprint different kidney cells, either derived from pluripotent stem cells or of adult species.

    Read More

  • Bioprinting through Levitation

    Magnetic levitation offers the possibility to place cells in a precise position in space through controlling the magnetic forces applied to magnetized cells. This new biofabrication technique, at the interface between bioprinting and bioassembly, provides new ways to create large-scale biological constructs that can be used for regenerative medicine purposes.

    Read More

  • SINERGIA: biofabrication for 3D in vitro models

    We are excited to have been selected for funding in a Marie Curie project called SINERGIA, which aims at developing advanced models of human physiology and diseases, to be ultimately introduced in the preclinical stages of the drug discovery pipeline.

    Read More


The major aim of our lab is to develop innovative biofarication approaches for regenerative medicine as well as training next generation's talented students and postdocs.

One of the most direct ways of contributing to these causes is by donating towards a research aim or sponsoring any of our group members directly. Please contact Professor Moroni about donations towards research for fighting diseases such as osteoarthritis, cardiovascular, and neural degeneration.

We are greatful to our generous sponsors!