BioFabrication for Medicine

We create solutions for clinical problems

Welcome to the Moroni Lab - Biofabrication for Medicine

The Moroni lab develops new biofabrication technologies to generate libraries of 3D scaffolds able to control cell fate. This passes through the design of biomaterials, 3D scaffolds, and surface properties to better understand cell-material interactions.

Current tissue engineering and regenerative medicine products suffer from high costs and laborious techniques that complicate scaling-up production. First generation products consisted of cells in suspension, encapsulated in hydrogels, or seeded into 3D porous matrices. These products demonstrated the potential of regenerative medicine therapies by reducing pain and restoring tissue continuity. Yet, the regenerated tissue is not always as functional as the original one. This leads to degeneration few years after surgery and consequently to the need of another surgery. Causes are different. Cells need to be expanded before achieving a sufficient number for implantation. Cell expansion is typically performed on 2D surfaces, while in the body cell proliferation and homeostasis happens in a 3D environment. This is associated with a loss of the original cell phenotype. Consequently, the expanded cells produce a different extracellular matrix (ECM), ultimately resulting in a tissue formation that is different than the targeted tissue to regenerate. Furthermore, surgical procedures with these products typically consist of two steps, namely isolation and expansion of cells from a tissue biopsy and cell seeding on scaffolds prior to implantation. This is associated with long hospital stay and rehabilitation time, increasing healthcare costs as well.

Our overarching goal is to create new solutions for regenerative medicine and understand the fundamental phenomena at the base of the observed regenerative processes.


Latest News

  • Writing with Electrospinning

    Direct Writing Electrospinning allows the deposition of bundles of fibers in a predetermined pattern, thus mimicking more closely the structural architecture of our native extracellular matrix.

    Read More

  • Comprehensive Review on Dynamic Hydrogels

    Mimicking the complexity of our own extracellular matrix with synthetic materials remains an open quest. In this comprehensive review, we have attempted to highlight the most exciting developments in the material science field aiming at getting closer to the dynamic behaviour of biological materials.

    Read More

  • Congratulations to Paul for his VENI!

    Veni is part of the Dutch science organization Talent Scheme. Veni is aimed at excellent researchers who have recently obtained their doctorate. Researchers in the Talent Scheme are free to submit their own subject for funding, which are encouraged to be curiosity-driven and innovative research.

    Read More

  • Interreg Project BONE starts in Paris

    Eight European companies and research institutes have teamed up in the innovative research project ‘’BONE: Bio-fabrication of Orthopaedics in a New Era’’. BONE is financed by the Interreg NWE programme, a cross-border partnership that is financially supported by the European Fund for Regional Development. This European transnational consortium led by Maastricht University (UM) will spend the next four years developing innovative bone implants.

    Read More


Sponsorship

The major aim of our lab is to develop innovative biofabrication approaches for regenerative medicine as well as training next generation's talented students and postdocs.

One of the most direct ways of contributing to these causes is by donating towards a research aim or sponsoring any of our group members directly. Please contact Professor Moroni about donations towards research for fighting diseases such as osteoarthritis, cardiovascular, and neural degeneration.

We are greatful to our generous sponsors!