News & Events

Comprehensive Review on Dynamic Hydrogels

More News

World TERMIS 2021

After Seoul, Vienna, and Boston, Maastricht was selected to host the next world conference of the tissue engineering and regenerative medicine society. We expect to attract more than 2'000 delegates by 2021 in Maastricht, which is at the center of a European region fervidly active in tissue engineering, regenerative medicine, stem cells, biomaterials, in silico modeling, and biofabrication.

Read More

Biofabrication for the eardrum

Tympanic membrane (or eardrum) is provided by nature with unique anatomic features that ultimately allow a superb physiologic performance in varying frequency ranges. Several pathologies damage this tissue, including chronic otitis media (COM), which ultimately bring to deafness.

Read More

Biofabrication with dynamic materials

3D printing makes it possible to create complex personalized products such as prostheses and implants directly from a 3D scan. To make this type of application possible, it is important that available materials have the correct mechanical and biochemical properties. In the TA program DYNAM, which is funded from the Innovation Fund for Chemistry, researchers and companies will tackle this challenge

Read More

New Project on 3D printing

Damaged and diseased bones in the region of head, face and jaws are common, and are conventionally treated using metallic or polymeric implants, which poorly bond to the surrounding bone. As a result, failure of such implants is common.

Read More

Podcast on Biofabrication

Prof. Moroni was interviewed by Future Tech Podcast on Biofabrication and its promise for regenerative medicine and pharmaceutical applications as 3D in vitro models.

Read More

Comprehensive Review on Dynamic Hydrogels
Published on: November 26, 2017
Category: Events

Three main cell-based stimuli can be harnessed to create responsive hydrogels: (1) enzymes (2) mechanical force and (3) metabolites/small molecules. Degradable bonds, dynamic covalent bonds, and non-covalent or supramolecular interactions are used to provide responsive architectures that enable features ranging from cell selective infiltration to control of stem-cell differentiation. The growing ability to spatio-temporally control the behavior of cells and tissue with rationally designed responsive materials has the ability to allow control and autonomy to future generations of materials for tissue regeneration, in addition to providing understanding and mimicry of the dynamic and complex cellular niche.

We are not yet ready to make hydrogels that can talk to cells, but they can certainly whisper them...

http://pubs.rsc.org/en/content/articlelanding/2017/mh/c7mh00373k#!divAbstract